SYNTHESIS OF ANTIBACTERIAL ETHYL 3-ARYL/ALKYL-2-(1H-TETRAZOLE-5-YL)ENOATES AND 5, 5’-(2-ARYLALKENE-1, 1-DIYL)BIS (1H-TETRAZOLE)S

M. Jeyachandran* and K. Shriram

Post Graduate and Research Department of Chemistry, Sri Paramakalyani College, Alwarkurichi, Tirunelveli - 627 412, Tamil Nadu, India
E. mail : jeyachandranm@gmail.com

ABSTRACT Aryl / alkyl ketones 1 a-c and 5 a-b were condensed with ethylcyanoacetate or malanonitrile afforded 3 a-c and 7 a-b respectively. Treatment on 3 a-c and 7 a-b with sodium azide and ammonium chloride in presence of dimethylformamide yielded 4 a-c and 8 a-b respectively. All the synthesized compounds have been characterized by the IR, NMR and Mass spectrum spectral data. Compounds 4 a-c and 8 a-b were evaluated for antibacterial activity.

Keywords Ethyl 3-aryl/alkyl-2-(1H-tetrazol-5-yl)enoates 5,5’-(2-Arylalkene-1,1-diyl)-bis(1H-tetrazoles) Antibacterial activity

INTRODUCTION
Nitrogen-containing heterocyclic compounds are indispensable structural units for both the chemists and the biochemists. In recent years, nitrogen polyheterocycles have received increasing attention due to their potential biological properties, and considerable efforts have been undertaken to exploit synthetic routes to these compounds. In particular, the tetrazole nucleus is present in compounds endowed with analgesic [1] and antihypertensive [2]. Their derivatives possess activity in both medicinal and pharmaceutical such as antibacterial [3], antifungal [4], antiviral [5], anti-inflammatory [6], antiulcer [7] activities.

This observation prompted us to undertake the synthesis of ethyl 3-(aryl/alkyl)-2-(1H-tetrazol-5-yl)enoates 4 a-c from ethyl 2-cyano-3-(aryl/alkyl)but-2-enoate 3 a-c and 5,5’-(2-arylalkene-1,1-diyl)bis(1H-tetrazoles) 8a-b from (arylalkene)malononitrile 7a-b and studied their antimicrobial properties.

Aryl/alkyl ketones 1 a-c were condensed with ethylcyanoacetate 2 in presence of piperidine and ethanol afforded 3 a-c. Treatment of 3 a-c with sodium azide and ammonium chloride in presence of dimethylformamide yielded 4 a-c (Scheme 1).

Similarly aryl/alkyl ketones 5 a-b were condensed with malanonitrile 6 in presence of piperidine and ethanol afforded 7 a-b. Treatment of 7 a-b with sodium azide and ammonium chloride in presence of dimethylformamide yielded 8 a-b (Scheme 2).
Scheme 1. Synthesis of compounds 4 a-c.

Scheme 2. Synthesis of compounds 8 a-b.

MATERIALS AND METHODS
All the compounds 3 a-c; 4 a-c; 7 a-b and 8 a-b gave positive test for nitrogen. The final products as well as the intermediate have been characterized by the spectroscopic data (IR and NMR & Mass spectrum). [8]

Melting points were determined on a sulphuric acid bath and are uncorrected. IR spectra were recorded on JASCO 470 FT-IR spectrometer and 1H-NMR spectra was recorded on a 300 MHz on Bruker (Avance) NMR spectrometer using TMS as an internal standard.

Mass spectra of all the synthesized compounds was performed on a JEOL JMS 600H mass spectrometer.

Experimental Procedures
General procedure for the synthesis of ethyl 2-cyano-3-aryl/alkybut-2-enoenate (3 a-c)

To a mixture of corresponding ketones 1 a-c (0.10 mol), ethanol (15 mL) and ethylcyanoacetate 2 (0.10 mol) were refluxed for about 4 h. The solvent was removed in vacuo and the residue was poured into cold water. The product separated was filtered, dried and recrystallized with Pet. ether - Chloroform.

Ethyl 2-cyano-3-phenylbut-2-enolate: (3a). Yield: 86%. IR (CHCl₃): υ = 3336 (C≡N Str.), 3052, 2976, 2930, 2281, 1744 (C=O Str.), 1651 (C=C Str.), 1177, 915, 763, 699, 632 cm⁻¹. 1H NMR (300MHZ, CDCl₃) : δ = 1.29 (t, 3H, CH₂C₃H₇), 2.40 (s, 3H, CH₃), 3.40 (m, 2H, CH₂CH₃), 7.10 -7.91 (m, 5H, Ar-H) ppm. Mass : m/z 215.39.

Ethyl 2-cyano-3,3-diphenylacrylate: (3b). Yield: 74%. IR (CHCl₃): υ = 3337 (C≡N Str.), 3061, 2983, 2935, 2282, 1747 (C=O Str.), 1659 (C=C Str.), 1178, 943, 920, 765, 702, 639 cm⁻¹.

Ethyl 2-cyano-3-methylpent-2-enolate: (3c). Yield: 87%. IR (CHCl₃): υ = 3331 (C≡N Str.), 2884, 2941, 2279, 1748 (C=O Str.), 1607 (C=C Str.), 1449, 1333, 1264, 1095, 1027, 855, 778 cm⁻¹.

General procedure for the synthesis of ethyl 3-aryl/alkyl-2-(1H-tetrazol-5-yl)enoates (4 a-c)

To a solution of 3 a-c (0.10 mol) in dry DMF (7 mL), sodium azide (0.20 mol) and ammonium chloride (0.20 mol) was refluxed for about 12 h. The reaction mixture was poured into 1:1 ice cold hydrochloric acid and the separated solid was filtered, washed with water, dried and crystallized with aq. ethanol.

Ethyl 3-phenyl-2-(1H-tetrazol-5-yl)but-2-enolate: (4a). Yield: 72%; m.p., 183°C. IR (CHCl₃): υ = 2924, 2210 (C-N Str.), 1909, 1656 (C=C Str.), 1595, 1439, 1277 (N-N=N), 1150 & 1016 (tetrazole ring), 919, 761, 699 cm⁻¹. 1H NMR (300MHZ, CDCl₃) : δ = 1.32 (t, 3H, CH₂CH₃), 2.59 (s, 2H, C=C CH₃), 3.20 (q, 2H, CH₂CH₃), 7.10 (m, 5H, Ar-H) 9.11 (s, 1H, NH)ppm. Mass : m/z 258.47.

Ethyl 3,3-diphenyl-2-(1H-tetrazol-5-yl)acrylate: (4b). Yield: 53%. IR (CHCl₃): υ = 2922, 2213 (C-N Str.), 1911, 1659 (C=C Str.), 1599, 1447, 1278 (N-N=N), 1151& 1017 (tetrazole ring), 920, 764, 700, cm⁻¹. 1H NMR (300MHZ, CDCl₃) : δ = 1.23 (t, 3H, CH₂CH₃), 3.42 (q, 2H, CH₂CH₃), 7.10 (m, 10H, Ar-H) 9.32 (s, 1H, NH) ppm. Mass : m/z 320.52.
Ethyl 3-methyl-2-(1H-tetrazol-5-yl)pent-2-enoate: (4c). Yield: 68%. IR (CHCl$_3$): ν = 2971, 2919 (C-H Str.), 2344, 2209 (C-N Str.), 1654 (C=C Str.), 1458, 1268 (N-N=N), 1115, 1031(tetrazole ring) cm$^{-1}$. 1H NMR (300MHZ, CDCl$_3$): δ = 1.16 (t, 3H, C=CCH$_2$C$_3$H$_3$), 1.66 (m, 3H, CH$_2$C$_3$H$_3$), 1.83 (s, 3H, C=CC$_3$H$_3$), 2.42 (m, 2H, C=CC$_3$H$_2$CH$_3$), 4.21 (m, 2H, C$_2$H$_2$CH$_3$), 9.10 (s, 1H, NH) ppm. Mass : m/z 210.43.

General procedure for the synthesis of 2-(aryalkene)malononitrile (7 a-b)

To a solution of corresponding ketones 5 a-b (0.10 mol), ethanol (15 mL) and malanonitrile 6 (0.10 mol) were refluxed for about 4 h. The solvent was removed in vacuo and the residue was poured into cold water. The product separated was filtered, dried and recrystallized with Pet. ether - Chloroform.

2-(1-Phenylethylidene)malononitrile: (7a). Yield: 79%. IR (CHCl$_3$) : ν = 3338 (C≡N), 3059, 2958, 2925, 1688, 1658 (C=C Str.), 1216, 1039, 757 cm$^{-1}$.

2-(Diphenylmethylene)malononitrile: (7b). Yield: 73%. IR (CHCl$_3$) : ν = 3329 (C≡N Str.), 3058, 2968, 2927, 2207, 1654 (C=C Str.), 1598, 1289, 1179, 1075, 843, 697 cm$^{-1}$.

General procedure for the synthesis of 5,5’-(2-arylalkene-1,1-diyl)- bis(1H-tetrazoles) (8 a-b)

To a solution of 7 a-b (0.10 mol) in dry DMF (7 mL), sodium azide (0.20 mol) and ammonium chloride (0.20 mol) were refluxed for about 12 h. The reaction mixture was poured into 1:1 ice cold hydrochloric acid and the separated solid was filtered, washed with water, dried and crystallized with aq. ethanol.

5,5’-(2-Phenylprop-1-ene-1,1-diyl)bis(1H-tetrazole): (8a). Yield: 62%; m.p., 196$^\circ$C. IR (CHCl$_3$): ν = 3304 (C≡N), 3261, 2957, 2925, 2270, 1968, 1658 (C=C Str.), 1394, 1279, 1214 (N-N=N), 1029 (tetrazole ring), 920, 702 cm$^{-1}$. 1H NMR (300MHZ, CDCl$_3$): δ = 2.17 (s, 3H, C$_3$H$_3$), 7.14 (s, 1H, NH), 7.26 (s, 1H, NH), 7.38 (m, 5H, Ar-H) ppm. Mass : m/z 254.47.

5,5’-(2,2-Diphenylethene-1,1-diyl)bis(1H-tetrazole): (8b). Yield: 62%. IR (CHCl$_3$): ν = 3312 (C≡N), 3259, 2956, 2929, 2268, 1963, 1657 (C=C Str.), 1392, 1276, 1213 (N-N=N), 1027 (tetrazole ring), 918, 704 cm$^{-1}$. 1H NMR (300MHZ, CDCl$_3$): δ = 7.11 (m, 10H, Ar-H) ppm. Mass : m/z 316.39.

RESULTS AND DISCUSSION

Antibacterial activity

Compounds 4 a-c and 8 a-b were evaluated for antibacterial activity by Kirby-Bauer disk-diffusion method [9] with two different concentrations (30 and 50 μL) against K. pneumonia, S. aureus, E. coli, P. aeroginosa and S. typhi. All the compounds were highly active in 50 μL concentrations Compounds 4a shows high activity against K. pneumonia, S. aureus, E. coli and S. typhi and compounds 8a shows high activity against all the species at 50 μL concentration. All other compounds possessed only moderate activity in both concentrations. The results are presented in Table 1.
Table 1. Antibacterial activity of Compounds 4 a-c and 8 a-b

<table>
<thead>
<tr>
<th>Compd.</th>
<th>Conc. (μL)</th>
<th>Zone of inhibition (mm)</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K. pneumonia</td>
<td>S. aureus</td>
<td>E. coli</td>
<td>P. aeroginosa</td>
<td>S. typhi</td>
<td></td>
</tr>
<tr>
<td>4a</td>
<td>30</td>
<td>3</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>13</td>
<td>10</td>
<td>9</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>4b</td>
<td>30</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>-</td>
<td>6</td>
<td>-</td>
<td>7</td>
<td>13</td>
</tr>
<tr>
<td>4c</td>
<td>30</td>
<td>-</td>
<td>-</td>
<td>7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>9</td>
<td>4</td>
<td>10</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>8a</td>
<td>30</td>
<td>5</td>
<td>2</td>
<td>-</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>12</td>
<td>7</td>
<td>14</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>8b</td>
<td>30</td>
<td>7</td>
<td>2</td>
<td>-</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>9</td>
<td>4</td>
<td>-</td>
<td>15</td>
<td>6</td>
</tr>
</tbody>
</table>

Acknowledgement

The authors thank Mr. M. Babu, Mr. N. Edavidulla, Madurai Kamaraj University and Mr. Selvakumar, NIIST, for their support. The authors also thankful to Department of Microbiology, Sri Paramakalyani College, Tirunelveli for carrying out biological studies.

REFERENCES